

Beam characterization for the TULIP accelerator for protontherapy through Full Monte Carlo simulations

C. Cuccagna TERA Foundation (CERN) and University of Geneva Naples, 17/10/2017

TERA: Vittorio Bencini , Daniele Bergesio , Pedro Carrio Perez , Enrico Felcini , Mohammad Varasteh Anvar , Adriano Garonna , Ugo Amaldi

CERN: Stefano Benedetti, Wioletta Kozlowska, Vasilis Vlachoudis,

TER

S. Benedetti, A. Grudiev, A.Latina, High Gradient LINACS for Protontherapy <u>PhysRevAccelBeams 20 040101 2017</u>

Introduction	Methods	Results	Conclusions

TULIP-Turning Linac for Protontherapy

Introduction

Methods

Results

Conclusions

Proton LINAC

- ✓ 4D active fast spot scanning (ACTIVE and FAST energy variation)
- ✓ suitable for volumetric rescanning
- ✓ Small beam emittance (small spots)
- ✓ Lower shielding requirement wrt cyclotrons

Courtesy of A. Degiovanni

ntr		<u>nn</u>
	UU	

MC techniques in Rad. therapy, Joao Seco, Frank Verhaegen, 2013

Introduction	Methods	Results	Conclusions	5

Introduction

Methods

Results

Conclusions

6

660 multi particle files corresponding to different Energy values

TER

57				
Introduction	Methods	Results	Conclusions	7

Methods : Full MC simulations for TULIP

Methods

MODEL OF THE NOZZLE

TERA Scanning magnet xy: Magnetic Field in Fluka

En =232 MeV

Introduction	Methods	Results	Conclusions	10

Results : Nozzle effect on the beam size

Methods

Results : Nozzle effect on the beam size

Introduction

TERA

Methods

TERA Results: TULIP –Beam Characterization for TPS

Introduction

Methods

Results: TULIP – Beam Characterization for TPS

Results: TULIP –Beam Characterization for TPS

1. In-air fluences :

Results: TULIP – Beam Characterization for TPS

1. In-air fluences :

Introduction	Methods	Results	Conclusions	16

Results: TULIP –Beam Characterization for TPS

2. IDD Integral Depth Dose curves (Bragg's Peaks)

Results: TULIP – Beam Characterization for TPS

2. IDD Integral Depth Dose curves (Bragg's Peaks)

Conclusions and future works

Thank you!!

Coming together is a beginning keeping together is progress working together is success Henry Ford

National Center of Oncological Hadrontherapy for the treatment of tumours

Introduction

Methods

TERA Results : Nozzle effect on the energy spread

Methods

TERA Results : Nozzle effect on the energy spread

E_a= 232.2MeV

Methods

TULIP Optics in MADX

Matching for the complete spectrum of energy:70-232 MeV

Fixed value of Beta at the isocenter in vacuum (beam size ~2.5mm for all energies)

٠

Optimization and linearization of the quadrupole gradients

Field error analysis on the harmonic components on dipoles and quadrupoles

٠

Orbit deviation (misalignment) correction

Conclusions and future works

BEFORE NOZZLE

En=73 MeV

En= 80 MeV

50

40

distribution 50

10

0

69.5

Conclusions and future works

Introduction

Methods

Introduction

Methods

Conclusions and future works

Pencil beam without energy spread

TULIP – Beam Characterization in air

Energy loss in the nozzle and air

Comparison with built-in

TERA Scanning magnet : Complex Map Field Field

ope

Bending effect on the beam in Fluka

31

TErapia con Radiazioni Adroniche

AQUA* program in monitoring lead by prof. F.Sauli
*Advanced QUality Assurance

Radiation beam in matter

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 040101 (2017)

http://medicalphysicsweb.org/cws/article/research/69024

AVO-ADAM's LIGHT proton system

Radio Frequency Quadrupole (CERN-RFQ) Side Coupled Drift Tube Linac (SCDTL) Coupled Cavity Linac (CCL)

http://www.advancedoncotherapy.com/